Predicting Random Effects with an Expanded Finite Population Mixed Model.
نویسندگان
چکیده
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer (JASA, 2004) developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model.
منابع مشابه
Predicting Random Effects from a Finite Population of Unequal Size Clusters based on Two-Stage Sampling
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Best linear unbiased predictors developed from mixed models are widely used, but their development requires distributional assumptions or an infinite population frame...
متن کاملPredicting Random Effects From Finite Population Clustered Samples With Response Error
In many situations there is interest in parameters (e.g., mean) associated with the response distribution of individual clusters in a finite clustered population. We develop predictors of such parameters using a two-stage sampling probability model with response error. The probability model stems directly from finite population sampling without additional assumptions and thus is design-based. T...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملEstimating Realized Random Effects in Mixed Models
A common analysis objective is estimation of a realized random effect. The parameter underlying such an effect is usually defined as an average response of a realized unit, such as a cluster mean, domain mean, small area mean, or subject effect. The effects are called random effects since their occurrence is the result of some (actual or assumed) random sampling process. In mixed models, random...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of statistical planning and inference
دوره 138 10 شماره
صفحات -
تاریخ انتشار 2008